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Intended as a contribution towards understanding the multiple processes entailed in 
the development of coastal sand bars due to wave action, this theoretical and 
experimental study deals with the Bragg reflection of long-crested surface waves in 
a water channel whose bed is corrugated sinusoidally. The present findings 
complement and in a few respects improve upon those in previous investigations, 
particularly Davies & Heathershaw (1984). 

In $2 a linearized theory is presented, being directed to the elucidation of 
experimental situations where monochromatic waves propagate into a channel with 
a limited stretch of corrugations on its bed and an imperfectly absorbing beach at its 
far end. Allowance is made fully for dispersive effects ($2.2) and approximately for 
small frictional effects ($2.3). Points of interpretation ($2.4) include accounts of 
degenerate but non-trivial solutions that apply at frequencies terminating the 
stopping band, wherein the spatial wavefield has an exponential envelope. The 
experimental results presented in $4 derive from measurements of the wavefield over 
a stretch of 24 corrugations, at various frequencies both inside and outside the 
stopping band. Quantitative comparisons ($54.2 and 4.3) demonstrate close 
agreements with the theory. 

1. Introduction 
This paper reports one stage of a long-continuing investigation into properties of 

the more or less parallel sand bars that can form on gently sloping beaches, as in the 
Baltic Sea, in the Great Lakes and off the South-East coast of England (e.g. see 
Saylor & Hands 1970; Lau & Travis 1973; Short 1975). The present theoretical and 
experimental contribution deals with a simpler hydrodynamic problem highly 
relevant to the explanation of sand bars. The account focuses, in certain respects 
more sharply than accomplished hitherto, on the process whereby surface waves can 
be reflected by fixed sinusoidal corrugations on the bed of a water channel. 

Our interest in the subject of sand-bar formation was stimulated during a visit by 
B.B.-K. to the Fluid Mechanics Research Institute at the University of Essex in 
1974, when the experiments reported here were begun. In  the coum of previous 
experiments on wave absorption by erodible beaches, she had noticed that bars 
typically developed with spacings about half the local wavelength of the incident 



250 T. B. Benjamin, B. Boczur-Karakiewicz and W. G. Pritchard 

200 - 

0 2 4 6 8 10 12 14 

Horizontal distance (m) 

FIGURE 1. The profile of a sand beach after 78900 periods ( x 39 h) of wave action over it. ---- 
indicates the initial profile of the beach, which had a slope of 1 : 75. The waves were initiated in a 
uniform channel of depth 0.25 m, having period 1.78 8 and wavelength 2.50 m. The amplitude of 
the incident wavelength was approximately 30 mm. 

wavetrain. An example of this phenomenon is given in figure 1, which shows the 
profile of an originally plane beach of sand after 78900 cycles of wave action. The 
gradual development of this profile was a complex process in several stages, to which 
further reference will be made in §5. The final effect in question is evident in the 
figure, however, namely the presence of bars spaced at  distances roughly half the 
wavelength, 2.5 m, of the incident surface waves. Such observations pointed to the 
possibility of the bars being caused by a standing-wave component of the wavefield, 
for it is well known that the action of (time-periodic) standing waves on an erodible 
bed can generate undulations in the bed at half the wavelength of the water 
waves. 

The process in question is demonstrated more clearly in figure 2, which exhibits 
successive phases in the development of undulations in a sand bed under the action 
of small-amplitude waves that had a distinct standing-wave component due to 
partial reflection from a rigid beach. This process is slow and quite complicated : for 
example, the ripples of comparatively short wavelength evident in figure 2 appear to 
play a pivotal role in the formation of the longer undulations. Nevertheless, although 
details of the process escape precise analysis, its eventual outcome is plain enough for 
a secure association of cause and long-term effect. 

The possibility of an interactive, gradually cumulative mechanism of sand-bar 
formation is thus suggested. Initial corrugations on an erodible bed with wavelength 
about half that of incident surface waves will, exemplifying the phenomenon of 
Bragg reflection, generate a standing-wave component of the liquid motion whose 
action will promote the growth of the corrugations. In  turn, enlargement of the 
corrugations will reinforce the standing-wave component. Note that Bragg reflection 
occurs over a range of temporal frequencies, the stopping band, wherein the 
wavelengths of waves in a corresponding uniform channel would be nearly twice that 
of the corrugations, and spatial phase-locking over the corrugations is a concomitant 
of the reflection mechanism. Although precise tuning of the water-wave frequency to 
the centre of the stopping band optimizes reflection, the mechanism in question 
remains operative throughout the stopping band. 

The subject of Bragg reflection, a name inherited from its origins in crystal- 
lography, has been explored in a wide range of physical contexts. For basic ideas and 
details of various applications, reference can be made to the famous monograph 
by Brillouin (1953) or the extensive review article by Elachi (1976). Oceanographic 
applications have been considered by Rhines (1970), Davies & Heathershaw (1984), 
Mitra & Greenberg (1984), Mei (1985), Kirby (1986a, b) and many others, among 
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FIQIJRE 2. Photographs of the sand bed of a channel showing the development of undulations 
through wave action. The mean water depth was 0.252 m and the period T of the waves was 
2.10 s,  corresponding to a wavelength of 3.20 m. The bed waa flat at time t = 0. (a) t /T = 2.99 x lo4 
( t  = 17.4 h); (b)  1.03 x lo6 (59.9 h); (c) 1.83 x lo6 (106.6 h); (d) 2.61 x lo6 (152.0 h). The markings 
indicate distance in m from the wavemaker. 

which antecedents the paper by Davies & Heathershaw is closest in substance to the 
present contribution. They reported some experimehtal observstions on long waves 
propagated across a patch with bottom corrugations in a wave tank. Their main 
results were measurements of a reflection coefficient for the corrugated patch, as a 
function of wave frequency, and measurements of the magnitude of the reflected- 
wave component as a function of position along the channel. The most striking 
confirmation by these results was that the rippled patch can indeed act as a strong 
reflecting barrier at frequencies near the so-called resonance frequency, that is, near 
the centre of the stopping band. A quite good general description of Davies & 
Heathershaw’s experimental data is provided by their own partial theory and by the 
ray-tracing theories of Mei (1985) and Kirby (19864. 

Several marginally doubtful aspects attended these previous empirical observa- 
tions, however, suggesting that a closely detailed agreement with the data 
should not be expected even though the broad outline of them is more or less well 
captured by the theories. In  the first place, the wavefield seems to have had a fairly 
high harmonic content, which suggests that nonlinear effects were hardly negligible. 
Specifically, the amplitude of the first harmonic appears to have been at least 20% 
of the fundamental amplitude, in some cases as much as 40%. Although allowance 
for weak nonlinear effects can be readily enough incorporated into theoretical models 
(e.g. as done by Kirby 1986b), attendant difficulties are nevertheless posed in 
practice when empirical methods are used to estimate and interpret quantities such 
as amplitude and phase angle for supposedly monochromatic waveforms. The 
methods used by Davies & Heathershaw to determine the magnitude of the reflected- 
wave component are also open to question. The procedure in fact followed is not fully 
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defined in their paper, and it must be regarded sceptically because the magnitude of 
the reflected wave, relative to that of the transmitted wave, was recorded as having 
considerable variation over stretches of the channel where the bottom was flat. A 
further cause for doubt is that, in some of the experiments recorded, the absorption 
properties of the beach terminating their channel appeared to vary markedly with 
small changes in frequency (e.g. see their figure 6b) ,  which behaviour is not 
normally associable with fixed plane beaches. 

The present theoretical and experimental study is complementary to those cited 
above, but special emphasis is given to several points of interpretation highlighted 
by empirical observations. Although the theory presented in $2 is less general than 
those developed by Mei (1985) and Kirby (1986a, b ) ,  it  has the advantages of being 
comparatively straightforward and being directed primarily towards the explanation 
of experimental results. A notable feature of our calculations is the allowance for an 
arbitrary level of the backward-travelling wave component reflected from a beach a t  
the far end of the channel. Attention is also given to the effects of viscous damping, 
and to the degenerate but non-trivial solutions that hold for frequencies at the ends 
of the stopping band. 

Our experimental channel had a wavemaker near one end, a rigid plane beach at 
the other end, and an intervening section in which the bed was sinusoidally 
corrugated for 24 wavelengths (see $3). The main experimental findings were derived 
from careful measurements of surface-wave amplitude as a function of position along 
the channel, at  each of several accurately controlled frequencies of the wavemaker. 
These frequencies were disposed both inside and outside the stopping band, and 
respective to each range of frequencies a variety of behaviour predicted theoretically 
was found to be confirmed with good accuracy by the experimental results (see $54.2, 
4.3). It is notable that in these experiments the water-wave amplitudes were always 
very small, typically less than 0.1 mm in comparison with a mean water depth of 
30 mm. Since maximum wave slopes were thus less than 2x x 0.1/30 = 0.021, the 
waveforms had negligible harmonic content. The scale of the experiments was such 
that some corrections for dissipative effects were needed in order to interpret the 
results satisfactorily by means of perfect-fluid theory. It appeared, however, that 
these effects played only a minor role in the principal phenomena observed. 

2. Theory 
The problem to be treated take its simplest form when a long-wave approximation 

is adopted, and this model will be examined first. A correct but very abbreviated 
account of it was included by Rhines (1970) in reviewing various oceanographic 
applications of ideas about wave propagation in periodic media. Being comparatively 
easy to understand, the results found on this basis will serve as a guide for the more 
accurate theoretical model that will be used for comparisons with the experiments. 

2.1. The long-wave approximution 
Suppose that in a straight channel of uniform span, the depth h(x) of water at rest 
is a gradually varying function of horizontal distance x .  For infinitesimal waves of 
great length in the water, the elevation c ( x , t )  of the free surface above its 

(1) undisturbed level satisfies 

which equation is obtained according to the standard approximations of shallow- 

Qt = g(ht;,)u 
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water theory (cf. Stoker 1957, 52.2). In the present application the bottom of the 
channel is taken to be deformed by small-amplitude corrugations with wavelength 
;A = n/k. Thus, writing z = kx = 2nx/A and letting H denote the mean depth of 
water, we have 

h=H(l+Scos22) with IS1 4 1. 

We further assume the wave motion to be simple-harmonic in time, writing 5 = 5(z)  
sin(wt+0) where 0 is a disposable real phase constant. (Note that values of 0 
differing by in can be assigned to two independent solutions in order to compose a 
complete description of the wavefield.) In  this case (1) becomes 

w 
- with y = - - ,  
dz 0 0  

where wo = k(gH)i is the frequency of waves that have wavelength A =2n/k 
propagating in water of uniform depth H. As may be expected, the most prominent 
effects of the corrugations will be found to arise when y = 1. Without significant loss 
of generality, we shajl henceforth take 6 to be positive. 

The substitution [ = (1 +S cos2z)fZ(z) reduces (2) to normal form, which may 
be further reduced to Mathieu’s equation by the neglect of terms that are relatively 
O( if2). Available results concerning Mathieu’s equations could therefore be applied. 
To the order of approximation that will suffice at present in powers of 6, however, 
it is equally simple to derive the needed results directly from (2), and this approach 
is helpful as a precedent for the more accurate, dispersive-wave theory to be 
developed in $2.2. 

According to Floquet’s theorem about differential equations with periodic 
coefficients, the two independent solutions of (2) have the form e*w x (periodic 
function of kz), The square of this exponent is a real analytic function of the two 
parameters S and y2 in (2), and the nature of the solutions, particularly respecting 
their physical interpretations, changes accordingly as p2 > 0 or p2 < 0. In  the first 
case, the solution having the factor e-@ with p > 0 describes a train of standing 
waves that attenuates in the z-direction and transmits no energy. The attenuation 
is not, of course, a dissipative effect. Rather, the channel presents a purely reactive 
impedance to excitation at the respective frequency, like a transmission line excited 
at  a frequency in a cutoff range. In the case that p2 < 0 and so p is purely imaginary, 
transmitted waves can be described by a combination of solutions whose dependence 
on z is quasi-periodic. 

We proceed to obtain a first approximation to p for small 6, but in the first place 
without restriction on the magnitude of 1 -ye.  Solutions of (2) are considered in the 
anticipated form 

f =  &(A sinz+B cosz+ ...I. 

Terms in sin 32 and cos 32 are seen from (2) to be next in the expansion; but having 
coefficients that are O(A6,BS) as 6+0 these terms can be neglected in the first 
approximation to p in powers of 6. Hence, after substitution of this expression for 5 
into (2), separation of the terms in sinz and cosz gives respectively 

I { 1 - y2-p2+ p( 1 +$)}A + 2pB = 0, 

2 p ~ - { l - y 2 - p 2 - - ( 1 + p 2 ) ) B  = 0, 
(3) 

9-2 
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(l-yZ-p2)2-@2(l+pU")"+p2 = 0. (4) 

Note fist from (4) that the critical condition p = 0, for which (2) has a periodic 
solution, occurs at  the two values yc > 0 of the frequency ratio y = w/w,  such that 
(1 - ya)e = v2. That is, 

We introduce the parameter 
yc =(l+p)+. ( 5 )  

so that the stopping band of frequencies, within which p2 > 0, corresponds to the 
interval ( -  1 , l )  of /3. When /3 lies inside this interval, or outside but not far from it, 
a consistent approximation for small S according to (4) is 

p = ;[@z - (1 - 7 2 ) 2 ] '  = as( 1 -/9")". (7) 

When I 1 -ye  I is not comparable with 6, however, the complete small4 result (4) 
needs to be used. This equation is a quadratic in p2, whose root recovering (7) in the 
case of small I 1 -7' I is 

pz = 7(4-Se+~eS2)4-  1 -y2+&Ye 

Note that with 6 = 0 this formula gives p2 = - (1 - Y ) ~ ,  which correctly reproduces 
the known properties of long waves in a uniform channel. Putting, p = i K / k ,  we 
obtain y = w/wo = ( k f ~ ) / k ,  confirming that the frequency w is proportional to the 
wavenumber k f ~  that arises from the present description of 3. 
As in the theory of Mathieu's equation, the Floquet exponent p for solutions of (2) 

can be represented exactly a~ the root of an infinite determinant with parameters 
ye and 8. Hence, by taking successively more rows of the determinant into 
consideration, improved approximations in higher powers of 6 could be obtained for 
the function p2 = p2(S,y2). It deserves emphasis that (3) and the deductions 
therefrom constitute a self-consistent first approximation for small 8, even a t  the 
lower end of the stopping band (/3+1) where A / B  + 0 and at the upper end (/3+ - 1) 
where B/A+O. Although accurate only to O(S), the simple result (7) suffices for 
present purposes. 

2.2. Approximation for dispersive waves 
Guided by the long-wave approximation but aiming to improve upon it, we now 
develop a theory of Stokes water waves in a channel with a corrugated bottom. The 
theory is superficially comparable with those developed by Mei (1985) and by Mitra 
& Greenberg (1984), the latter of whom considered gradual temporal rather than 
spatial changes in wavetrains reflected by corrugations. But our approach is 
essentially different from theirs and is directed towards various careful comparisons 
with the experimental observations to be presented in $4. Take axes (z, y) such that 
the undisturbed free surface is described by y = H and the bottom A# by 

y = SH cos2kx. 

(For the time being the contracted notation z = kx is relinquished.) Being supposedly 
generated from rest by conservative forces, the wave motion has a velocity potential 

(8) 1-&Ye 

&x, y, t) that satisfies- 
(9) 
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in the fluid-filled domain for all t .  The kinematical condition satisfied at the bottom 
is 

% = o  on@, 
an 

where a/an denotes the normal derivative. The linearized kinematical and dynamical 
conditions at  the free surface are respectively 

S t = &  $ t + g S = O  o n y = H ,  

between which the elimination of 5 leads to 

" 2 d  = 91, on y = H 

in the case that $ = d(x, y) COB ( o t +  0). 
We introduce the transformation 

[ = x- (SH cosech 2kH) sin 2kx cosh 2k(H - y), 
q = y+(6H cosech2kH) cos2kx sinh2k(H-y), 

noting that y = H is transformed into q = H and, to first order in 6, the equation 
y = -SH cos2kx describing the bottom is transformed into q = 0. Since this 
transformation is conformal (i.e. [, = qv, tv = -qz), its Jacobian J = a([, q)/a(x, y) is 
the same as 5", + ti, which at once shows that J = 1 - (48kH cosech 2kH) cos 2kE 
cash 2k(H - 7) + O(S2). 

Again because the transformation is conformal, (9) implies that 

d,+ d, = 0, (12) 

and to first order in S the boundary conditions (10) and (1 1) become 

and 
" 2 6  = gJq, 

=g(l-ecos2k[)~, on q =H,  

with E = 2SkH cosech2kH < 6. 
A non-trivial solution of the boundary-value problem (12)-( 14) is needed in the 

form indicated by Floquet's theorem, namely a harmonic function whose 5- 
dependence for each q~ [O,H] is of the type ek6 x (2n-periodic function of kt). As a 
first-order approximation in powers of E ,  the appropriate solution of (12) satisfying 
(13) is seen to be 

d = @kE{C(sin k[ coshkq cospkq-cos k[ sinh kq sinpk~,~) 

+ D(cos k& cosh kq cospkq +sin k[ sinh kq sinpkq)}. (15) 

Estimates by inspection similar to those noted in $2.1 show that the next stage of 
approximation in powers of E would require additional potentials with factors sin 3k5 
and cos3k[. However, to the order of accuracy already decided by the adoption of 
(13) and (14) as approximations, the extra terms would not affect the estimation of 
p. For the time being we do not assume I p I to be small, so covering cases where the 
[-dependence of solutions is determined mainly by the ordinary dispersive properties 
of Stokes waves rather than by the influence of the corrugations. Allowance is thus 
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made for the possibility that y has large imaginary values, such as would preserve the 
validity of (15) in the case that o were much different from the frequency 

(16) o,, = (gk tanh kH); 

of waves with the wavelength h = 2n/k in water of uniform depth H. 

respectively 
After substitution of (15) into (14), separation of terms in sin k[ and cos k[ gives 

{y2T - ( T - p )  (1 + $ Z ) } C + { Y ~ T ~ T -  ( r+yT)  (1 +&)} D = 0,  

-{y2T27- (r +pT)  (1 -&)} C+{y2T - (T-PT)  (1 -&)} D = 0, 

in which T = tanh kH, T = tanykH 

and 

Hence, from the requirement that the determinant of 
that 

(17) be zero, it is found 

This relation determining y implicitly as a function of y2 and E is accurate only for 
e 6 1, but it entails no restriction on values of 11 -y2  I .  Several points of 
interpretation are listed as follows. 

(i) Upon the substitution of y = iK/k which implies r = i t a n h ~ H  = i.?, say, the 
left-hand side of (18) can be factorized to give 

w;’ (1 - T 2  7“’) {w2 - g (k + K )  tanh (k + K)H} {w2 - g (k - K )  tanh (k - K ) H }  

Our result thus bears out the expected property that, when E = 0, either K or - K 

satisfies 
w2 = g(k+K) tanh(k+K)H 

(i.e. then k f ~  comply with the dispersion relation for Stokes waves in a uniform 
channel). 

(ii) According to (18) the two critical values yc of y that correspond to y = 0, so 
marking the ends of the stopping band, are given by 

yc = ( 1  -+$)i > 0, (20) 

which compares with (5).  Since e 4 1 by assumption, the width of the stopping band 
is thus reduced in the ratio 

- = 2kH cosech2kH = R, 
6 

say, from its values according to the long-wave theory. [It is noteworthy that go,, 
approximately the frequency difference between the centre and ends of the stopping 
band, is the same as the ‘cutoff frequency’ 9, that has a prominent role in Mei’s 
account (1985, (2.30)).] 

(iii) Inside the stopping band, or more generally when I 1 - y2 I as well as E is small, 
(18) shows I y 1 to be comparably small ; and we can therefore put T = ykH in a first 

E 
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approximation, provided kH is not much larger than 1. Hence the first approximation 
to p given by (18) is seen to be 

[+.” - (1 - y”)”]’ 
” l + k H ( T - * - y T ) ’  

and it is consistent with this approximation to put y2 = 1 in the denominator on the 
right-hand side. Thus, reintroducing the parameter /3 as defined by (6) but with (20) 
in place of (5 )  for yt,  we obtain 

+( 1 -@”,” 
’= 1+R ’ 

which compares with (7). It is noteworthy that the formula (20) agrees exactly with 
the result (18) concerning the condition p = 0. In  figure 6 later, where experimental 
measurements are presented, graphs of p = p( y2)  in the stopping band, continued as 
graphs of the real function ip(y2) outside it, will be plotted both from (21) and from 
(18). 

(iv) In the long-wave limit kH+O, we have R = 1 and so E = 6. The previous 
results (5) and (7) are thus recovered from (20) and (22) in this limit. 

(v) As is obviously to be expected, the corrugations have a smaller influence on the 
Stokes waves treated here than on long waves as treated in 52.1, and their influence 
disappears for very short waves which are insensitive to the presence of the bottom. 
For example, the maximum real p > 0 occurs for B = O  according to (22), 
corresponding @ = O(e2) according to (21), and its value is approximately 

Thus, owing to effects neglected by the long-wave theory, the maximum attenuation 
rate is reduced in the ratio 2R/( 1 + R), which decreases monotonically with 
kH > 0 and vanishes in the limit kH+O. Roughly speaking, the factor R < 1 is 
accountable to the exponential diminution of the wave motion with depth below the 
surface. The partially compensating factor 2/(1+ R) > 1 is accountable to the 
dispersive properties of Stokes waves and might be expected, being the ratio of the 
phase velocity wo/k to the group velocity dw/dk of waves at  the frequency wo in a 
uniform channel. 

(vi) In the experiments to be reported, the optimal wavelength h (twice that of the 
corrugations) equalled 12.0H, so that 

2kH = 1.0472, R = 0.8382, 2R/(1 +R) = 0.9120. 

Correspondingly, the optimal frequency wo given by (16) was lower in the ratio 
[(tanh kH/kH)]r  = 0.9579 than its value k(gH)i according to the long-wave theory. 
Thus, although the waves in question were moderately long, allowance for dispersive 
effects was essential to a reliable comparison with theory. As regards the magnitude 
of effects due to the corrugations, the experimental specifications made E = 0.0978, 
so that the number defined by (23) waa 0.0266. These numbers are small enough for 
reasonable confidence in the approximations to first order in S. 

2.3. Modelling of the experimental situaticm 
We next consider how to adapt the theory to the situation where water waves of 
small amplitude are observed in a channel with a corrugated bottom, with a simple- 
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harmonic exciter at one end and with a beach at the other. At frequencies inside the 
stopping band, the corrugations tend to reflect energy and so produce standing 
waves. Because the length of the corrugated stretch is limited, however, some energy 
transmission towards the beach always occurs ; and so the simplest solution of the 
theoretical problem, describing pure (reactive) attenuation with distance from the 
exciter, will generally be insufficient. Outside the stopping band the rate of energy 
transmission will be greater, depending correspondingly more on the efficiency of the 
beach as an energy absorber. In all cases an adequate description requires both 
independent solutions of (2), or of the Stokes-wave problem treated in $2.2, which 
can together compose a solution satisfying an appropriate terminal condition a t  the 
beach. 

The effect of the beach can reasonably be modelled as if concentrated at x = 0, say, 
and we now conveniently take x (and so also z = k x )  to be measured positively 
towards the other end of the channel. In terms of the perturbed elevation y of the free 
surface, the effect of the beach is accordingly representable by the condition 

&-wcz = r(&+w&) at z = 0, (24) 

in which r ,  the reflection coefficient, is a number satisfying 0 < r < 1. The plausibility 
of (24) as a model for present purposes is supported by its obvious interpretation in 
the case of sinusoidal waves with any wavenumber k = w / c  in a uniform channel. 
Perfect absorption by the beach is represented by r = 0, for the condition Q-wQ 
( = Ct -cQ) = 0 at z = 0 characterizes a wholly transmitted wave there ; and perfect 
reflection is represented by r = 1 which makes c2 = 0 at  z = 0. Typically r lies 
between 0.1 and 0.2 for beaches in the laboratory (cf. Mahony & Pritchard 1980). 

In our experiments wave amplitudes were measured as a function of distance along 
the channel at  fixed frequencies w .  For comparison, therefore, we need predictions of 
the function 

&z) = smax ~ ( z ,  t )  - min ~ ( z ,  t ) ) ,  (25) 

which is the same as (e+&)i if and t2 are the amplitudes of components of [ 
in temporal quadrature. The prediction of g for wavefields in a uniform channel 
should first be noted. In  this case a simple calculation shows (24) to imply that 

t t 

when viscous damping is neglected. Thus, for T = 0 (perfect absorption by the beach) 
&z) is constant, as is obviously to be expected; and for r = 1 (perfect reflection) the 
result is t ( z ) / & O )  = I cos z 1 ,  describing pure standing waves with nodes a t  z = in, 
gn, ... (i.e. x = i A ,  :A, ...). With allowance for viscous effects causing a spatial 
attenuation rate Ak < 0, which applies to both the incident and reflected wavetrains, 
the implication from (24) is that 

&z) 
40) - l + r  

(e2k + r2 e-2Az+ 2r cos 22); -- 

eAz + r e-AZ cos 22 
l + r  

+ O(r2). - - 

These simple results are well known (cf. Ursell, Dean & Yu 1960; Mahony & 
Pritchard 1980, $5). 
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Proceeding to account for the effects of the bottom corrugations, we shall first use 
the long-wave theory in order to demonstrate the method, after which modifications 
required by dispersive waves can easily be recognized. The two independent solutions 
of ( 2 )  were originally considered in the form 

where $ is a periodic function with period 2 ~ ;  and the first approximation for small 

$(z)  = cosz+p sinz, S gave 

in which p = A / B  is determined by (3), changing sign with the sign of p. (Note that 
although (3) indicates Ipl+.O and lpl+ 08, respectively, at the lower and upper 
ends of the stopping band (i.e. p + 1  and /?+-l), so that alternative explicit 
representations of $ are needed in these limits, the exceptions! cases will in fact be 
subsumed in the reduction that follows.) Suitably taking 5, & f as the independent 
solutions of (2 )  and anticipating the form of ((x, t )  imposed by the terminal condition 
(24), we obtain 

C(x, t )  = a(cos z coshpz + p  sin z sinhpz) sin wt 

as an appropriate representation of the wavefield. 

+ b(cosz sinhpz+p sinz coshpz) coswt (28) 

Substitution of (28) into (24)  shows that 

( l - r ) a  = ( l + r ) ( p + p ) b ,  

and the term in p can be neglected consistently with the first approximation for small 
S, provided frequency is not far from the stopping band. Hence b can be eliminated 
from (28), and then evaluation of (25) leads to 

+ (1 -Q + p 2 - w - 2  +( 1 --Q - p 2  + w - ~ )  C O S ~  2p2) cos 22 

+ 2(p + qp-l) sinh 2pz sin 2z]f, (29) 

in which q = (1 -r)2/(l + T ) ~ .  (It is noteworthy as a check that this result reduces 
correctly to (26)  if one formally takes p +. 0, supposing p and p-' to remain bounded 
in the limit. As will be appreciated presently, however, a more exacting account of 
the limit is needed for the correct interpretation of behaviour at the end-points of the 
stopping band.) 

As a first approximation for small 8, the expression (29) can now be recognized to 
follow also from the dispersive-wave theory of 5 2.2. This correspondence btxomes 
clear upon noting how is related to the velocity potential 4 by the boundary 
conditions preceding (1 I),  noting also that the differences between (2, y) and ( E ,  7) are 
O(6). In  the new presentation of (29) the only modifications are that p is to be 
evaluated from (21) or (22) rather than (7), and that now approximately p = C / D ,  
where C and D are the constants introduced in (15) .  Thus p is determined by either 
of (17), which can be simplified consistently with the first approximation for small 8 

and small I 1 - y2 I . To sum up the approximate result for dispersive waves, we have 
(29) with the following revised specifications : (i) p is given by (22) ,  in which from (20) 
modifying (6) 
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This result shows that, a t  frequencies within the stopping band ( -  1 < B < 1 and 
so p > 0), both the non-oscillatory component of &) and the amplitude of its 
oscillations increase exponentially with distance z = kx from the beach. As will be 
exemplified in $4, experimental estimates of p can be made by comparing measured 
graphs of [ (z)  with the prediction (29), in which an appropriate value of q is taken. 
It will be confirmed presently, moreover, that (29) also correctly predicts observable 
behaviour a t  the ends of the stopping band (b = 1 )  and moderately far outside it 
($ ' 1). 

2.4. Points of interpretation 
We note several interesting aspects of the general result (29). 

2.4.1. An invariant property 
The local wave amplitude is shown by (29) to have the form 

(= [u+ v cos22+ w sin2z]f, 

in which U ,  V and W are smooth functions of pz, being thus slowly varying in 
comparison with cos2z and sin2z. It follows that the peaks and troughs in &) 
describe envelopes given very nearly by 

CM,Cm = [U&(V2+W2)']? (31) 

5" M 5" m -  -[U2-V2-W2]'; 

The slowly varying functions cM and fm are illustrated in figure 3. The definitions (31) 
imply that 

and when this expression is evaluated for U ,  V, W as specified in (29), it appears upon 
reduction that 

in all cases, irrespective of the values of E and /3 and hence p. The simple property (32) 
is at first sight surprising in view of the complexity of (29) ; but further investigation, 
which we pass over, shows it to represent the necessary constancy of energy 
transmission through the wavefield in all cases. 

2.4.2. Frequency at centre of stopping band 

(approximate) maximum value $ / ( 1  + R )  according to (22), and (29) reduces to 
When w = o,, we have /3 = 0 and so p = - 1 by (30). In this case p takes its 

(33) &) 

W )  
= (1 + Q)-i [cosh 2p2 + Q cos 22 - sinh 2pz sin 2z$, 

where 
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rz r z  
FIQURE 3. Comparisons between standing-wave envelopes &,, (cf. (31)) at the centre of the stopping 
band (-, B = 0) and at the low-frequency end of the stopping band (----, B = 1): (a) r = 0 ;  
(b)  r = 0.2. 

With T = 0, for example, (32) gives 

tM, tm = t (0 )  e*F, 

which compares with the result CM = tm = t(0) exp (Az) according to (27), for waves 
subject to viscous damping in a uniform channel. 

2.4.3. The case p = 0 
Taking the limits /3+ 1 and p+- 1 in (29), one obtains respectively. 

where e’ = e / (  1 + R ) .  It is thus shown that prominent effects of the corrugations 
remain at the low-frequency end (/3 = 1) and high-frequency end (p = - 1) of the 
stopping band, although p = O  there. The wavefield can still suffer considerable 
attenuation along the channel towards the beach. In fact, for small r and for a 
moderate total length of the channel ($2 limited to about 5, say), the envelope 
functions tM and fm corresponding to either (34) or (35) turn out not to differ greatly 
from those corresponding to (33) at the centre of the stopping band. The formula (29) 
consequently needs to be applied with considerable precision in estimating p from 
experimental observations in a channel of moderate length. 

The results (34) and (35) reflect the fact that for p = 0 the original problem has a 
periodic solution, but there is a second, non-periodic solution which is also needed to 
satisfy the terminal condition at the beach. For example, in the case /3 = 1, the two 
solutions of (2) approximated to O(8) are 

tl = cosz-# cos32, t2 = sinz-8(& cosz+& sin3x). 

Rederiving the dispersive-wave theory ab  initio in each of the special cases /3 = f 1, 
one has to consider one periodic and a second non-periodic form for the potential # 
in place of (15); but the outcome merely confirms the approximations (34) and 
(35). 
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2.4.4. The case ,@ > 1 

to (22) the real number v is given by 
For frequencies outside the stopping band, we may write ,u = iv, where according 

+p- l)t 
V =  > 0. 

1 + R  

The formula (29) still gives das a positive real function, becoming upon rearrangement 

&) 
7 = [ (/32 - 1) ( 1 + &)I-' [p - /3& + (/3& - 1 ) cos 2vz 
5(0) + {/3- Q +/3( /3~-  1) cos 2vz) cos 2z+ ( / 3 ~  - 1) ($ - 1)t sin 2vz sin 2214. (37) 

Here Q is as defined below (33). The approximations underlying the formula (37) 
limit its applicability in the present case to ranges of frequency above and below but 
comparable in width with the stopping band, such that v remains a small fraction. 
The main feature revealed, to which our experimental observations were directed, is 
that the wavefield has gradual sinusoidal modulations with period x / v  in z, so x/vk 
in x. 

For an experimental channel in which the stretch with a corrugated bottom has 
length D, say, it is clear that this new feature will not be prominent unless I 1 -y2  I 
is made significantly larger, by a margin depending inversely on D,  than its value at 
the ends of the stopping band. That is, the anticipated oscillations in the envelopes cM and c,,, may not be discernable until at least one period x/vk  is covered in the 
available length D.  In general, observations at frequencies only marginally outside 
the stopping band are difficult to interpret, and I /3 I needs to be raised well above 1 
(to about 2 in our experiments) before measurements of v become feasible in the 
simple way suggested. 

The number Q is positive unless the beach is perfectly absorbing. Therefore, 
because of the factor /3Q-  1 common to the terms in (37) that describe the gradual 
modulations, the effects represented are, for the same I /3 I , more prominent on the 
high-frequency side (/I < - 1) than on the low-frequency side (/3 > 1). A curious 
indication by (37) is that for /3 = 1/Q the modulations disappear, leaving [featureless 
except for uniform oscillations with the wavelength of the bottom corrugations. As 
Q is usually quite small, however, this critical value of /3 may be too high for the 
present approximations to be reliable. 

Finally, note the following simple check on (37). Take the formal limits /3+- 00 

and /3+ 00 with v held fixed, so that 8 -+ 0 since + I /3 I /( 1 + R) + v according to (36). 
The results are 

@= (1 + Q)-"l+Q C O S 2 ( 1 + V ) Z ] 4 ,  

a 0  ) 

which recover (26) representing uniform wavefields with basic wavenumbers (1 
Because 
first order in I w -wo 1 /wo these wavenumbers are both given by 

v) k. 
= 1 - y2 = (wi - w 2 ) / w i  by the original definition of 8, it follows that to 

This result is precisely as must be expected, since *( 1 + R) (wo /k )  is the group velocity 
dw/dk of Stokes waves at  the frequency wo. 
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3. Experiments 
3. 1. Apparatus 

The experiments were made in a glass-sided channel of span 0.30 m and length 6 m. 
The bed of the channel was carefully levelled, so that its deviation from a mean 
horizontal plane was reduced to less than 0.4 mm, and the width of the channel was 
uniform to within 0.2 mm. A false bottom, composed of a layer of expanded 
polystyrene into which sinusoidal corrugations had been cut, was wedged into the 
channel, seated on the original bed. A wavemaker was placed near one end of the 
channel, and a rigid plane beach with slope 1 in 10 was fixed at the other end. 

The wavemaker consisted of a plate suspended on a horizontal shaft, whose axis 
was normal to the walls of the channel at a height of about 1 m above the bed. The 
gaps between the edges of the plate and the sides and bed of the channel were packed 
with foam plastic to restrict leakage past the wavemaker. The plate was driven in an 
oscillatory motion by a long crank keyed to an eccentric on the shaft of a stepping 
motor. The constant-frequency signal operating the motor was derived by countdown 
from a crystal oscillator, the stability of which ensured extremely precise control of 
the wavemaker. 

The false bed of the tank was arranged in the following way. The first 0.94 m was 
a horizontal plane surface at the mean height of the corrugations that lay beyond this 
flat section. The corrugations, with wavelength 0.18 m and amplitude 3.5 mm, 
extended a further 4.32 m along the channel and were terminated by a smooth join 
to the beach. There was a total of 23 crests in the corrugated section. 

To make the corrugated section we cut two templates to the desired profile of the 
bed and fixed these on either side of a block of polystyrene. A heated wire stretched 
straight perpendicularly to the templates was then dragged through the polystyrene, 
its movement being guided by the templates. By careful adjustments to the 
temperature of the wire and the speed at which it was pulled, an accurate clean cut 
could be made in the polystyrene. After the bed had been wedged into the tank, the 
uniformity of the corrugated section was checked by measurements of the depth of 
the crests below the surface of still water. These measurements, both across and 
along the channel, showed that the vertical locations of the crests varied more or less 
randomly about their mean level with a standard deviation of about 0.6 mm. 

The heights of waves on the water surface were measured by means of small 
proximity transducers placed just above the surface (cf. Barnard 6 Pritchard 1972). 
The output from the transducers was relayed to an ultraviolet chart recorder, giving 
a continuous record of the surface elevation. Wave amplitudes in the present 
experiments were typically 0.1-0.2 mm and were measured with an accuracy of 
about 2 or 3 %. 

Except for the false bed, this basic apparatus was the same as used by Buchan 
(1979), by Mahony & Pritchard (1980) and by Bona, Pritchard & Scott (1981), whose 
accounts include further details of the equipment and experimental methods. 

3.2. Experimental procedure 
The tank was filled with water to roughly the desired depth and surface films were 
skimmed off. The water was then topped up until the level was within 0.01 mm of a 
reference level, set by the tip of a pointer gauge. For all the experiments to be 
described here, the mean depth of water was nominally 30 mm. Due to the residual 
variability of the corrugations as already noted, however, the actual mean depth was 
not known with the same high accuracy as the adjustments to the reference level. 
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(We also made measurements using a corrugated bed with wavelength 0.15 m and 
amplitude 4.5 mm in water of depth 37.5 mm. The results of these other experiments 
were found to be consistent with those reported here.) 

When the required water level had been established, the wavemaker was started 
oscillating at the desired frequency and measurements of the local waveform were 
taken at 30 mm intervals along the working section of the channel. These records 
were then used to determine the distance-dependent wave amplitude, namely the 
real function t ( z )  in the equation 

describing the vertical displacement of the free surface (cf. (25)). Here z = kx = 2nx/h 
and B is a phase number which generally varies with z but does not need evaluation 
in the present investigation. 

4. Experimental results 
The main specifications of the experiments are listed underneath table 1, which 

presents various experimental results to be explained below. The quantity A ,  called 
the basic wavelength, is the wavelength of waves with radian frequency w = 2n/T 
in a uniform channel of depth H ;  it is given implicitly by the dispersion relation 

(39) 

As indicated in the table, the values of T were chosen so that A was increased in steps 
of 10 mm. For the conditions of these experiments, the periods T ,  corresponding to 
the critical values y, of y that mark the ends of the stopping band are 0.6763 and 
0.7103 s. It is thus seen that the periods prescribed in the experiments extended well 
beyond the theoretical extremities of the stopping band. The fact that the period for 
experiment ( f )  coincided to four decimal places with that at  one end of the stopping 
band was coincidental. 

4.1. Main features of results 
The primary experimental results are recorded in figure 4, where [ / H  is plotted as a 
function of z (=  kx) ,  with the origin for z taken a t  the wavemaker and with z 
increasing towards the beach. An obvious adjustment is needed and no confusion 
should arise regarding our previous use of z, in (24) et sep., to denote distance from 
the beach towards the wavemaker. The interruption of the records near z = 44 is 
due to an obstruction above the tank which impeded measurements. The straight 
vertical lines near z = 19 indicate the start of the corrugated section, and the 
positions of the crests of the corrugations are also marked. It is worth noting that 
each of the component graphs in figure 4 presents nearly 160 separate measurements 
taking many hours to collect. 

The classes of behaviour described in $82.3 and 2.4 are evident from these graphs. 
The wave amplitude [ (z)  is seen to have an oscillatory component with roughly 
the same wavelength as the corrugations on the channel bed; it is nearly uniform 
above the initial flat section of the channel but is modulated over the subsequent 
corrugated section. In figure 4(a-c), at periods well below the critical value 
T ,  = 0.6763, the modulations are seen to be regularly oscillatory in z (cf. (37)), with 
a wavelength that increases as T approaches T , .  Estimates of the wavelength L of 
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FIQURE 4(u-f). For caption see facing page. 
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FIGURE 4. Measured wave amplitudes f / H  as a function of distance z along the channel. 
(a) T = 0.6223 8 ;  (b)  0.6399 s; (c) 0.6574 s; (d)  0.6751 s; (e) 0.6927 s; (f) 0.7103 8 ;  (g) 0.7282 8 ;  

(h) 0.7461 s; (i) 0.7637 s. 

these modulations are included in the fifth column of table 1. Similar estimates were 
also made for experiments (g), (h) and (i), but not for experiments (d) ,  ( e )  and (f) 
which were at  periods T either too close to or wiihin the stopping band. The 
wavelengths I attributable to the fast oscillations of &) have also been determined 
from these graphs and are given in the last column of table 1. (Comparisons of these 
estimates for L and I with the theoretical predictions of 92 will be made below.) 

Another feature evident in figure 4 for experiments (a), (b), (c) and (g), (a) ,  ( i )  is 
the gradual reduction, with distance along the channel, undergone by the local mean 
value of t / H .  This feature arises from the attenuation of outward-travelling waves, 
as indicated in (27), through viscous damping at the bed and sidewalls of the channel 
together with possible damping effects a t  the free surface. On the aasumption that 
outward-travelling waves decay according to exp ( - z / L , )  (cf. (27)), estimates of the 
dissipative length-scale L, have been made from the data for experiments (a), (b), (h) 
and (i) ,  and the results are included in table 1. It is plain that, although not 
insignificant, dissipative effects were a secondary feature of the experiments and in 
no c & ~ e  dominated the effects principally in question. The mean value L, of ,the 
estimates for L, quoted in table 1 is 9.68 m, and thus (k&,)-l = 5.92 x which 
number will be used later in making corrections for dissipative effects. 

The results of experiments (d), (e) a,nd (f), carried out at  periods very near to or 
within the stopping band, exemplify the bekaviour anticipated in 92.3 (see (29) and 
(33)). For example, the local maxima in are seen, as expected, to decay more 
or less exponentially with z. 
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~ Q U R E  5. Comparisons between measurements of wave envelopes CM and theoretical curves for 
I&&). (a) Experiment (e) at T = 0.6927 s; - based on (29). ( b )  Experiment (f) at T = 0.7103 s;  
__ based on (29); ---- baaed on (34). 

4.2. Comparisons with theory 
We shall now make various quantitative comparisons between the observations and 
the theoretical results described in $2. First consider experiment ( e )  for which the 
period T = 0.6927 s, near the centre of the stopping band. Let us suppose that the 
observed local maxima & of care well represented by (29) together with (31), but the 
decay rate p is a free parameter. Thus an empirical estimate for p cap be obtained 
by determining the value of p that minimizes the difference between CM as given by 
(29) and & as determined experimentally. Representative values of & at positions 
zt, i = I ,  ..., N ,  were obtained from the data, and the value of p was determined 
giving a global minimum of the quantity 

In order to specify EM, however, an appropriate value for the amplitude of the 
reflected wave at the far end of the channel is needed to fix q. For experiment ( e )  
measurements of 5 were obtained only as far as z = 70. Let us proceed, therefore, by 
specifying r from the measurements of [ (z )  near z = 70 ; that is, take 
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FIGURE 6. Comparison between empirically determined values of p and the theoretical predictions 
(19) (-) and (21) (----). The points 0 were determined from decay rates, and 0 from 
the wavelengths of the envelopes of t (z)  shown in figure 4. 

where cM and em are respectively the local maximum and minimum of enear z = 70, 
and use this estimate of r to evaluate q in (29). For experiment ( e )  this procedure 
assigns r a value approximately 0.595, for which the corresponding value of p is 
0.0655. The value of p hence found to minimize F is p = 0.03495. (The minimum is 
quite sharp for, in contrast with the (normalized) value F = 1.0 at  p = 0.03495, it is 
found that F = 5.2 with p = 0.034 and F = 1.6 with p = 0.036.) A comparison 
between the empirical values of &(z)  and the function cM(z;p), with this optimal 
value of p, is shown in figure 5(a). (Note that, by assuming the channel to terminate 
near z = 70 in order to make an estimate for r, we imply the slope of eM to be zero 
there and so incapable of matching that of & exactly.) 

Now the total decay rate of cis a combination of that due to the blocking effect 
of the corrugations and that due to the dissipative effects noted above. Since the 
dissipation evidently had a minor role in these experiments, let us suppose that the 
observed decay rate of fM is the linear sum of the two effects. It then follows that an 
empirical estimate for the blocking effect of the corrugated bed is that the decay 
coefficient p = 0.0350- (kL,)-' = 0.0290, which number coincides with the theor- 
etically estimated value of p quoted in table 1. This value of p is plotted in figure 6, 
where the theoretical distribution for p(r2) ,  determined from (18), is also given. (The 
dashed curve shown in figure 6 is the approximate form (21) for p.) 

[Note that the value of r used in the above calculations does not correspond to the 
reflection coefficient at the beach at the far end of the channel. Rather it is an 
empirical estimate of the relative amplitudes of the forward and backward- travelling 
waves near z = 70. An estimate of the reflection coefficient of the beach is probably 
most easily made from experiments (a) and ( i ) ,  which indicate a value of about 0.14. 
This value for r accords with those reported by Mahony t Pritchard (1980). It is easy 
to verify that the formula (41) for r ,  with CM and c,,, defined by (31) in terms of 
defined by (25), is equivalent to the formula (24) as originally referred to the beach. 
While various other representations are possible, (41) is best suited to empirical 
estimates of the local reflection coefficient that varies along the tank. As expressed 
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estimates of the local reflection coefficient that varies along the tank. As expressed 
most usefully by (41), T is essentially the same as the reflection coefficient otherwise 
represented and denoted K, by Davies & Heathershaw (1984), R by Mei (1985) and 
Kirby (1986a, b).] 

Similar comparisons have been made with the results of experimentB (d) and (f). 
Experiment ( f )  deserves special attention since the chosen period T = 0.7103 s 
happened to equal the theoretical value T, corresponding to the low-frequency end 
of the stopping band. Thus the formula (34) for the limiting case B = 1 might be 
expected to apply. At the right extremity of the records in figure 4 ( f ) ,  specifically a t  
z = 87, it is estimated that T = 0.363 and so q = 0.218. Hence, when amplified by an 
exponential factor with exponent kL, to allow for dissipative effects, the formula (34) 
gives the dashed curve for tM included in figure 5(b) .  This curve can be seen not to 
agree well with the experimental results ; however, the discrepancy is explainable 
readily enough by the sensitivity of p to small changes of T in the neighbourhood of 
each special value T,. (Note that p(y2) is not a continuously differentiable function 
at the ends of the stopping band (see (21) and figure 6).) Resort to the more general 
formula (29) is therefore warranted, and we may use the same test as applied to 
experiment ( e ) .  For example, let us take T = 0.7100 s instead of 0.7103 s for 
experiment (1). Then the minimum of F as defined by (40) is found to be achieved 
with p = 0.0117 ; and the substitution of this value in (29) gives the continuous curve 
in figure 5 ( b ) ,  which is in far more satisfactory agreement with the experimental 
results. Subtracting as before the estimated exponent that allows for dissipative 
effects, one obtains for p the empirical estimate 0.0052, which is plotted in figure 6 
and compares with the theoretical value 0.0047 at the frequency in question. 

Experiment (d) was at T = 0.6751 a, just below the theoretical value T, = 0.6763 s 
for the high-frequency end of the stopping band. Thus a small imagkary value of 
p might be expected; but the estimation of p presented uncertainties. (Their 
inevitability may be appreciated in the light of the fact that an error in the estimate 
of h as small as 0.5 mm, or in the estimate of H about 0.1 mm, would be enough to 
put the operating period T = 0.6751 s within the stopping band.) The records in 
figure 4 (d )  suggested r = 0.455 and so q = 0.141 at z = 87, which value of q was used 
in comparisons based as before on (29) or its equivalent version (37). With B = - 1.080 
corresponding to T = 0.6571 a, our least-squares method referred to (37) led to an 
estimate of p roughly 0.01i. On the other hand, by taking instead T = 0.6767 s just 
inside the stopping band, a fairly close optimal fit with the experimental results was 
obtained from (29) with p = 0.005. On balance it appeared well justified to take 
p = 0 as the representative estimate. In  fact, strongly supporting this estimate, 
an evaluation of the formula (35) for B = - 1 _was_found to give a reasonably 
close approximation to the measured profile of - 6&, which approximation was 
virtually indistinguishable from the second of those described above. 

With contrasting ease, at frequencies well outside the stopping band, the real 
number v > 0 in the representation p = +iv can be estimated $rectly from the 
observed wavelength of the gradual modulations imposed on &). The relation 
between v and this wavelength was explained below (37) in 52.4. The values so 
obtained, from the experimental runs (a),  (b), (c ) ,  (g), (h) and (i), are quoted in table 
1 and are plotted as open circles in figure 6. Again there is quite good agreement with 
the theoretical prediction derived from (29), here more suitably considered in its 
version (37). 
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FIQURE 7. The observed phase q5 of local minima of f ( z )  relative to the crests of the corkgations on 
the bed. Positive values of q5 correspond to the minimum C: occurring at  a smaller value of z than 
that of the relevant crest on the bed. Here z,, denotes the distance from the wavemaker to the crest 
of the first corrugation. Figure labels (b), (e) and (h) correspond to those of the experiments in 
table 1. 

4.3. Local properties of fast oscillations 
From the records of [ (z )  presented in figure 4, further comparisons with theory can 
be made in respect of the fast oscillations whose spacings are comparable with the 
wavelength of the corrugations on the channel bottom. In particular, the measured 
positions of local maxima and minima of [ ( z )  relative to the corrugations illuminate 
differences in behaviour inside and outside the stopping band of frequencies. 

Figure 7 shows a representative sample of such measurements, for the experimental 
runs (b), (e)  and ( k )  at frequencies respectively above, inside and below the stopping 
band. For each of the three cases the estimated phase # of local minima of &) 
relative to adjacent crests in the corrugations is plotted against the numbering of 
corrugations, so in effect against distance along the channel in units of $A. 

The theory developed in 52 shows that, at frequencies within the stopping band, 
the fast oscillations of [ ( z )  should be locked in phase with the corrugations (cf. (29) 
with pU2 > 0) .  This property is confirmed convincingly by figure 7 ( e ) .  It was also 
found to be borne out, although not quite so precisely, by corresponding estimates 
from the experimental runs (d )  and (f) near the extremities of the stopping band. 
Approximate confirmation of the property in question may be seen directly by 
inspection of figures 4 ( d )  and 4(  f ). 

A t  frequencies outside the stopping band the fast oscillations of &) are no longer 
locked in phase with the corrugations (cf. (37)), and this property is exhibited 
plainly in figures 7 (b) and 7 (k). In  experiment (b), for example, the phase # was found 
to increase with distance at a more or less constant rate until a phase reversal 
occurred in the region near the 10th corrugation where the amplitude of the fast 
oscillations was smallest. Thereafter, for a new sequence of minima of [ ( z ) ,  the phase 
$ again increased at nearly the same rate as before. On the other hand, figure 7 ( k )  
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FIGURE_% Measurements of the fractional change of local wavenumber for the fast oscillations of 
&), plotted aa a function of ya. The curve - describes the quantity - v s p ( p ) .  

exemplifies the gradual reduction in q5 that was observed at  frequencies below the 
stopping band. The rate of reduction is seen to have been more or less steady in two 
stretches separated by the region between the 12th and 14th corrugations, where the 
amplitude of the fast oscillations became small and so phase estimates became 
unreliable. 

Figure 7 illustrates the resources for finding the typical wavelength I of the fast 
oscillations, the estimates of which are included in table 1. Attention is restricted to 
regular sequences of minima of <(z) away from regions of phase reversal, and averages 
of the spacings are taken. Although appreciable local variations in 1 arose from the 
measurements in experiments (c), (g), (h) and (i), the estimated averages of 1 appear 
to be adequately representative. 

As shown by (38), the local wavelength 2 d / A  of <(z) approaches x ( l + u )  as 
p++ 00 when u is a fixed positive real number. In other words, we should have 
(+A/Z) - 1 x f K at frequencies respectively well above and well below the stopping 
band. In figure 8 our experimental values of @ / I )  - 1 are accordingly compared with 
u computed from (29) or (37), being plotted as a function of y2. The main features 
of the function u(y2) are seen to be duplicated by the measurements of (iAA/l) - 1 ; in 
particular, the observed property of phase-locking within the stopping band is re- 
emphasized in the figure. The fact that the experimental values of (;A/l) - 1 and the 
computed u are notably separate a little way above and below the stopping band is 
understandable, not particularly because of experimental error but rather because 
the definition of 1 is inherently tenuous in these ranges y2. 

5. Conclusion 
As presented in $$4.2 and 4.3, the various quantitative checks on the experimental 

results support confidence in the reliability of the theory developed in $2. In 
particular, the comparisons illustrated in figure 6 and the observations of phase- 
locking only within the stopping band of frequencies are convincingly confirmative. 
The limitations of the theory should be re-acknowledged, namely its assumption of 
small enough wave amplitudes for nonlinear effects to be negligible and also its 
assumption that the amplitude of the corrugations is a reasonably small fraction 
(6 4 1) of the mean water depth H. Even though confined to small-amplitude waves, 
the present experiments nevertheless serve to exemplify the high level of precision 



Rejection of water waves in a channel with corrugated bed 273 

needed for a satisfactorily explicable record of the wavefield over a corrugated 
bed. 

Let us finally return to the ideas about sand-bar formation mentioned near the 
beginning of $1. They deserve a little more commentary it8 motivation for this 
investigation and for related experimental work yet to be reported; but it has to be 
admitted that our views regarding the relevance of all such findings to oceanographic 
events remain extremely cautious. The variety and complexity of field observations, 
such as the few cited at the start in $1, underscore reasons for caution. 

From laboratory tests such as providing figure 1 it was evident to us that, even 
when the incident surface waves are a t  the same frequency over long times, the 
evolution of a sand beach under wave action commonly depends on several different 
processes which may interact with and succeed each other in largely inextricable 
fashion. Among these contributory processes the induction of standing waves by 
Bragg reflection, as examined in the present paper, is likely to be a comparatively 
minor although not necessarily insignificant one. On the other hand, the main 
redistribution of sand on a beach seems most often to occur in regions where locally 
intense eddying motion of the water lift significant quantities of sand, which regions 
may be associated with wave breaking (cf. Lau & Travis, 1973, p. 4489). In  our other 
experiments represented here by figure 1, there usually were short periods (e.g. 15- 
30 min) during which the beach profile underwent major changes, and they were 
followed by comparatively long intervals (e.g. 25-30 h) during which only small 
changes in the beach profile accumulated. Occasionally, during an interval of relative 
quiescence, when conditions happened to be right, it appeared that a slowly 
cumulative process entailing quasi-resonant reflection was probably operative. For 
we noticed in these particular experiments over many hours that a standing-wave 
component of the motion gradually grew, eventually breaking and generating large 
turbulent zones, whereupon there began a period of relatively fast change in the 
beach profile. Such observations have reinforced our belief that the present results 
may have some bearing on coastal sand-bar formation, albeit perhaps only in special 
instances ; but fuller discussion of these other observations has to be left as a separate 
story. 
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